Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages

Authors

  • Raheleh Rafaiee Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
Abstract:

The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence has indicated that altered hippocampal neurogenesis is associated with the pathophysiology of neuropsychological disorders including addiction. The addictive drugs impair neurogenesis and undermine the function of neural stem/progenitor cells in hippocampus. This feature was claimed to be one of the underlying mechanisms of behavioral changes in patients with addiction. As the impairment of stem cells’ function has been proved to be the underlying cause of pathologic neuroadaptations in the brain, the administration of stem cell populations has shown promising results for re-modulating of neuronal status in the brain and especially in the hippocampus. Among different types of stem cells, bone marrow derived mesenchymal stem cells are the most proper candidates for stem cell therapies. In this review article, the recent studies on the effects of addictive drugs on brain neurogenesis, and also the promising potential effects of stem cells in curing addiction related hippocampal damages are discussed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

comparison between orbital fat-derived stem cells and bone marrow-derived mesenchymal and adipose-derived stem cells in human

purpose: to separate and characterize orbital fat-derived stem cells (ofscs) and compare its cellular and molecular properties with those of bone marrow-derived mesenchymal stem cells (mscs) and adipose-derived stem cells (ascs). methods: stem cells from orbital fat, abdominal fat and bone marrow aspirates have been isolated. we assessed stem cell specific cell surface markers using cytometry, ...

full text

Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster

Objective(s): Adipose tissue-derived mesenchymal stem cells (AT-MSCs) with more potent immunomodulatory effects, greater proliferative potential and secretion of growth factors and cytokines in comparison with bone marrow derived MSCs are more appropriate for cell therapy. The aims of the present study were to evaluate the histomorphometric effect of AT-MSCs allotransplantation on regeneration ...

full text

Sertoli cell condition medium can induce germ like cells from bone marrow derived mesenchymal stem cells

Objective(s): Although many researchers have confirmed induction of germ cells from bone marrow mesenchymal stem cells (BMMSCs), there are no reports that confirm spontaneous differentiation of germ cells from BMMSCs. In this study, we have evaluated the effect of adult Sertoli cell condition medium (SCCM) as a mutative factor in the induction of germ cells from BMMSCs. Materials and Methods: ...

full text

Gene Expression Profile of Adherent Cells Derived From Human Peripheral Blood: Evidence of Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) provide a novel option in cellular therapy and tissue engineering. Recent studies indicated that it is possible to obtain MSCs from peripheral blood by attachment ability to plastic surface. To evaluate adherent cells derived from peripheral blood, their expression profile and surface markers were investigated. The results of RT-PCR indicated that these cells expre...

full text

Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue None

pages  69- 79

publication date 2018-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023